Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
J Toxicol Sci ; 47(11): 439-451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36328534

RESUMO

Aluminum salt adjuvants (Als) have been the most widely used adjuvants in vaccines and known to be effective in intramuscular inoculation. However, in rare cases, some Al containing vaccines caused serious adverse events such as chronic pain at the site of the injection. The Als cause mild tissue damage at the inoculation site, allowing the antigen to be locally retained at the inoculation site and thus potentiate innate immunity. This is required to elicit effectiveness of vaccination. However, there is concern that chronic muscle damage might potentially lead to serious adverse events, such as autoimmune disease and movement disorders. In this study, muscle damage caused by several Al containing vaccines were examined in guinea pigs. Mild and moderate inflammation were observed following Al containing split influenza virus vaccine, formalin-inactivated diphtheria-pertussis-tetanus and Salk polio vaccine. While massive inflammation and muscle damage were observed in Al-containing human papillomavirus vaccine-inoculated animals. However, the severities of damage were not associated with their Al contents. Masson's trichrome staining and immunostaining revealed that injured muscle at the inoculated site recovered within one month of vaccination, whereas inflammatory nodules remained. Flow cytometric analyses of the infiltrating cells revealed that the number of CD45+ lymphocytes and potential granulocytes were increased following vaccination. The number of infiltrated cells seemed to be associated with severity of muscle damages. These observations revealed that Al containing vaccine-induced muscle damage is reparable, and severity of transient muscle damages seemed to be determined by type of antigen or types of Al salts rather than Al content.


Assuntos
Alumínio , Vacinas , Cobaias , Humanos , Animais , Alumínio/toxicidade , Vacinas/efeitos adversos , Adjuvantes Imunológicos/toxicidade , Inflamação/induzido quimicamente , Músculos
2.
Crit Rev Toxicol ; 52(6): 403-419, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36112128

RESUMO

Aluminum (Al) salts are commonly used as adjuvants in human and veterinary vaccines for almost a century. Despite this long history of use and the very large number of exposed individuals, data in the literature concerning the fate of these molecules after injection and their potential effects on the nervous system is limited. In the context of (i) an increase of exposure to Al salts through vaccination; (ii) the absence of safety values determined by health regulators; (iii) the lack of robustness of the studies used as references to officially claim Al adjuvant innocuity; (iv) the publication of several animal studies investigating Al salts clearance/biopersistence and neurotoxicity; we have examined in this review all published studies performed on animals and assessing Al adjuvants kinetics, biodistribution, and neuromodulation since the first work of A. Glenny in the 1920s. The diversity of methodological approaches, results, and potential weaknesses of the 31 collected studies are exposed. A large range of protocols has been used, including a variety of exposure schedule and analyses methods, making comparisons between studies uneasy. Nevertheless, published data highlight that when biopersistence, translocation, or neuromodulation were assessed, they were documented whatever the different in vivo models and methods used. Moreover, the studies pointed out the crucial importance of the different Al adjuvant physicochemical properties and host genetic background on their kinetics, biodistribution, and neuromodulatory effects. Regarding the state of the art on this key public health topic, further studies are clearly needed to determine the exact safety level of Al salts.


Assuntos
Alumínio , Sais , Animais , Humanos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/toxicidade , Alumínio/toxicidade , Cinética , Distribuição Tecidual
3.
Arch Razi Inst ; 77(1): 221-228, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35891766

RESUMO

Aluminum hydroxide nanoparticles have been employed in many industries, which are widely abundant in many aspects of human life. The role of the aluminum hydroxide nanoparticles adjuvant is to enhance the immune response. However, the impact of nanoparticles exposure has not been perfectly investigated yet. Accordingly, some questions have been raised about their potentially harmful effects, based on which the current research aims to answer them. This study aimed to investigate the histological effects of aluminum hydroxide nanoparticles and bulk-aluminum hydroxide (bulk Al[OH]3) on the liver, lung, heart, and kidney tissues. For this reason, an experiment was implemented on the aluminum hydroxide nanoparticles adjuvant in five neonatal mice. Intramuscularly, the mice were injected with 0.125 mL of adjuvanted vaccine, while five neonatal mice were injected with bulk and nanoparticles of Al (OH)3 and then sacrificed after one and two months, respectively. Vaccines were controlled by evaluating the histopathological response in neonatal mice. Subsequently, the pathological effect of both adjuvants was surveyed using the histological study of the lung, liver, heart, and kidney of the animals. The obtained recorded data indicated that both types of vaccine adjuvants caused pathological lesions on the histology sections of the liver, lung, heart, and kidney tissues. Moreover, bulk Al (OH)3 adjuvant vaccine was more effective and had a higher pathological response than aluminum hydroxide nanoparticles adjuvant vaccine. In addition, the total DNA content in both groups was estimated using Fluorometer from Promega. Compared to aluminum hydroxide nanoparticles groups, the tissues indicated a decrease in total DNA content obtained in bulk Al (OH)3 groups. Therefore, it can be concluded that the exposure to aluminum hydroxide nanoparticles would result in less pronounced toxicity, as well as systemic inflammation, compared to the bulk Al (OH)3 aluminum hydroxide.


Assuntos
Nanopartículas , Vacinas , Adjuvantes Imunológicos/toxicidade , Hidróxido de Alumínio/toxicidade , Animais , Animais Recém-Nascidos , DNA , Camundongos , Nanopartículas/toxicidade
4.
Clin Exp Pharmacol Physiol ; 49(3): 406-418, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34796981

RESUMO

Cardiac dysfunction is one of the leading causes of death in epilepsy. The anti-arrhythmic drug, amiodarone, is under investigation for its therapeutic effects in epilepsy. We aimed to evaluate the possible effects of amiodarone on cardiac injury during status epilepticus, as it can cause prolongation of the QT interval. Five rat groups were enrolled in the study; three control groups (1) Control, (2) Control-lithium and (3) Control-Amio, treated with 150 mg/kg/intraperitoneal amiodarone, (4) Epilepsy model, induced by sequential lithium/pilocarpine administration, and (5) the epilepsy-Amio group. The model group expressed a typical clinical picture of epileptiform activity confirmed by the augmented electroencephalogram alpha and beta spikes. The anticonvulsive effect of amiodarone was prominent, it diminished (p < 0.001) the severity of seizures and hence, deaths and reduced serum noradrenaline levels. In the model group, the electrocardiogram findings revealed tachycardia, prolongation of the corrected QT (QTc) interval, depressed ST segments and increased myocardial oxidative stress. The in-vitro myocardial performance (contraction force and - (df/dt)max ) was also reduced. Amiodarone decreased (p < 0.001) the heart rate, improved ST segment depression, and myocardial contractility with no significant change in the duration of the QTc interval. Amiodarone preserved the cardiac histological structure and reduced the myocardial injury markers represented by serum Troponin-I, oxidative stress and IL-1. Amiodarone pretreatment prevented the anticipated cardiac injury induced during epilepsy. Amiodarone possessed an anticonvulsive potential, protected the cardiac muscle and preserved its histological architecture. Therefore, amiodarone could be recommended as a protective therapy against cardiac dysfunction during epileptic seizures with favourable effect on seizure activity.


Assuntos
Amiodarona/uso terapêutico , Antiarrítmicos/uso terapêutico , Epilepsia/complicações , Cardiopatias/tratamento farmacológico , Cardiopatias/etiologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/toxicidade , Animais , Biomarcadores/sangue , Epilepsia/induzido quimicamente , Glutationa/sangue , Interleucina-1/metabolismo , Cloreto de Lítio/administração & dosagem , Cloreto de Lítio/toxicidade , Masculino , Malondialdeído/sangue , Agonistas Muscarínicos/administração & dosagem , Agonistas Muscarínicos/toxicidade , Contração Miocárdica/efeitos dos fármacos , Pilocarpina/administração & dosagem , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Superóxido Dismutase/sangue , Troponina I/sangue
5.
J Med Chem ; 64(16): 12261-12272, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34382796

RESUMO

Modern adjuvants for vaccine formulations are immunostimulating agents whose action is based on the activation of pattern recognition receptors (PRRs) by well-defined ligands to boost innate and adaptive immune responses. Monophosphoryl lipid A (MPLA), a detoxified analogue of lipid A, is a clinically approved adjuvant that stimulates toll-like receptor 4 (TLR4). The synthesis of MPLA poses manufacturing and quality assessment challenges. Bridging this gap, we report here the development and preclinical testing of chemically simplified TLR4 agonists that could sustainably be produced in high purity and on a large scale. Underpinned by computational and biological experiments, we show that synthetic monosaccharide-based molecules (FP compounds) bind to the TLR4/MD-2 dimer with submicromolar affinities stabilizing the active receptor conformation. This results in the activation of MyD88- and TRIF-dependent TLR4 signaling and the NLRP3 inflammasome. FP compounds lack in vivo toxicity and exhibit adjuvant activity by stimulating antibody responses with a potency comparable to MPLA.


Assuntos
Adjuvantes Imunológicos/farmacologia , Glucosamina/farmacologia , Glicolipídeos/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/toxicidade , Animais , Feminino , Glucosamina/síntese química , Glucosamina/metabolismo , Glucosamina/toxicidade , Glicolipídeos/síntese química , Glicolipídeos/metabolismo , Glicolipídeos/toxicidade , Humanos , Inflamassomos/metabolismo , Interleucina-1/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
6.
J Chem Neuroanat ; 117: 101996, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34214592

RESUMO

This study assessed the role of caffeine (adenosine receptor antagonist) in the Lateral geniculate body as well as the primary visual cortex of hyaluronic acid model of glaucomatous rats. Twenty (20) male Long evans rats were randomly divided into four groups with five animals each. This research confirmed that hyaluronic acid (HA) significantly induces elevated intraocular pressure from 18 to 35 mmHg and caffeine had no effect on its reduction to palliate visual impairment; There were a significant increase in the lipid peroxidation and conversely decrease in superoxide level with HA which were attenuated by caffeine. Although, caffeine showed a capability of ameliorating the histopathological changes induced by HA in terms of maintenance of a viable neuronal cell count and significant reduction of tumour necrosis factor-α immune positive cells in the LGB and visual cortex. These findings suggest that caffeine was unable to lower the intraocular pressure after hyaluronic acid exposure but has the ability to restore the antioxidant imbalance via mitigating pro-oxidant mediators and abrogate neurodegeneration.


Assuntos
Cafeína/farmacologia , Corpos Geniculados/efeitos dos fármacos , Ácido Hialurônico/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Córtex Visual Primário/efeitos dos fármacos , Adjuvantes Imunológicos/toxicidade , Animais , Antioxidantes/farmacologia , Corpos Geniculados/metabolismo , Corpos Geniculados/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Masculino , Estresse Oxidativo/fisiologia , Córtex Visual Primário/metabolismo , Córtex Visual Primário/patologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos , Ratos Long-Evans , Fator de Necrose Tumoral alfa/metabolismo
7.
Food Funct ; 12(9): 4046-4059, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33977945

RESUMO

Previous studies have reported that Portulaca oleracea L. polysaccharides (POL-P3b) is an immunoregulatory agent. However, few studies exist on POL-P3b as a novel immune adjuvant in combination with the DC vaccine for breast cancer treatment. In this work, a DC vaccine loaded with mouse 4T1 tumor cell antigen was prepared to evaluate the properties of POL-P3b in inducing the maturation and function of DC derived from mouse bone marrow, and then to investigate the effect of the DC vaccine combined with POL-P3b on breast cancer in vivo and in vitro. Morphological changes of DC were observed using scanning electron microscopy. Phenotypic and functional analyses of DC were detected by flow cytometry and allogeneic lymphocyte reaction. Cytokine levels in the DC culture supernatant were detected by ELISA. Western blotting analysis was used for the protein expression of TLR4, MyD88 and NF-κB. Apoptosis detection and protein expression of the tumor tissue were analyzed by TUNEL staining and immunohistochemistry, respectively. The security of POL-P3b was evaluated by the detection of hematological and blood biochemical indicators and pathological analysis for tissues. POL-P3b can induce DC activation and maturation, which is attributed to increasing the specific anti-tumor immune response, and the mechanism of action involved in the TLR4/MyD88/NF-κB signaling pathway. Experimental results in vivo further suggested that the administration of POL-P3b-treated antigen-primed DC achieved remarkable tumor growth inhibition through inducing apoptosis and enhancing immune responses. Moreover, the POL-P3b-treated DC vaccine was able to inhibit lung metastases. The results proved the feasibility of POL-P3b as an edible adjuvant of the DC vaccine for anti-breast cancer therapy.


Assuntos
Adjuvantes Imunológicos , Neoplasias da Mama/terapia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/imunologia , Polissacarídeos/imunologia , Portulaca/química , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/toxicidade , Animais , Antígenos de Neoplasias/imunologia , Apoptose , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Imunogenicidade da Vacina , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Polissacarídeos/toxicidade
8.
Life Sci ; 276: 119456, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33811895

RESUMO

BACKGROUND: In recent years, female infertility from Polycystic Ovary Syndrome (PCOS) has gained scientific interest. PCOS alters the metabolic and endocrine functioning in females. The elevation in androgens can damage the androgen receptors present on the kidney giving rise to renal disorders like Focal Segmental Glomerulosclerosis (FSGS). Transforming Growth Factor Beta (TGF-ß) in the ovary is activated by activin for Follicle Stimulating Hormone (FSH) secretion and in the kidney by thrombospondin 1 (TSP1) for cell growth and apoptosis. Studies show that gamma-linolenic acid (GLA) effectively treats breast cancer, eczema, inflammatory conditions and PCOS. AIM: The study aimed to find out the possibility of FSGS development in PCOS and to understand the effect of GLA on FSGS via the TGF-ß pathway. METHOD: To carry out the study, the dehydroepiandrosterone (DHEA) induced PCOS model was used. Three groups namely vehicle control, DHEA, and DHEA+GLA, were used with six animals in each. TGF-ß1, TGF-ß2, and TSP1 genes were studied using real-time PCR. RESULTS: The study showed an increase in the level of renal fibrosis biomarker, TSP1, in the DHEA group, which was further decreased by an anti-inflammatory agent, GLA. The TGF-ß1 and TGF-ß2 genes associated with the TGF-ß pathway were seen to be increased in DHEA-induced PCOS rats which showed a possible relation between the two conditions. CONCLUSION: The study shows a possible development of renal fibrosis in the DHEA-induced PCOS model. The GLA might act as a ligand to regulate TGF-ß signaling in glomerulosclerosis in a DHEA-induced PCOS model.


Assuntos
Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Síndrome do Ovário Policístico/complicações , Fator de Crescimento Transformador beta/metabolismo , Ácido gama-Linolênico/farmacologia , Adjuvantes Imunológicos/toxicidade , Animais , Desidroepiandrosterona/toxicidade , Feminino , Glomerulosclerose Segmentar e Focal/etiologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/patologia , Ratos , Ratos Wistar , Transdução de Sinais , Fator de Crescimento Transformador beta/genética
9.
Front Immunol ; 11: 2171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013912

RESUMO

The efficacy of vaccine adjuvants depends on their ability to appropriately enhance the immunogenicity of vaccine antigens, which is often insufficient in non-adjuvanted vaccines. Genomic analyses of immune responses elicited by vaccine adjuvants provide information that is critical for the rational design of adjuvant vaccination strategies. In this study, biomarker genes from the genomic analyses of lungs after priming were used to predict the efficacy and toxicity of vaccine adjuvants. Based on the results, it was verified whether the efficacy and toxicity of the tested adjuvants could be predicted based on the biomarker gene profiles after priming. Various commercially available adjuvants were assessed by combining them with the split influenza vaccine and were subsequently administered in mice through nasal inoculation. The expression levels of lung biomarker genes within 24 h after priming were analyzed. Furthermore, we analyzed the antibody titer, cytotoxic T lymphocyte (CTL) induction, IgG1/IgG2a ratio, leukopenic toxicity, and cytotoxicity in mice vaccinated at similar doses. The association between the phenotypes and the changes in the expression levels of biomarker genes were analyzed. The ability of the adjuvants to induce the production of antigen-specific IgA could be assessed based on the levels of Timp1 expression. Furthermore, the expression of this gene partially correlated with the levels of other damage-associated molecular patterns in bronchoalveolar lavage fluid. Additionally, the changes in the expression of proteasome- and transporter-related genes involved in major histocompatibility complex class 1 antigen presentation could be monitored to effectively assess the expansion of CTL by adjuvants. The monitoring of certain genes is necessary for the assessment of leukopenic toxicity and cytotoxicity of the tested adjuvant. These results indicate that the efficacy and toxicity of various adjuvants can be characterized by profiling lung biomarker genes after the first instance of immunization. This approach could make a significant contribution to the development of optimal selection and exploratory screening strategies for novel adjuvants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Biomarcadores , Imunização/métodos , Vacinas contra Influenza/imunologia , Pulmão/efeitos dos fármacos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/toxicidade , Administração Intranasal , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Líquido da Lavagem Broncoalveolar , Citotoxicidade Imunológica/efeitos dos fármacos , Relação Dose-Resposta Imunológica , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Imunoglobulina A/biossíntese , Imunoglobulina A/imunologia , Imunoglobulina G/biossíntese , Imunoglobulina G/sangue , Vacinas contra Influenza/administração & dosagem , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Subpopulações de Linfócitos T/imunologia , Equilíbrio Th1-Th2/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-1/genética , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
10.
Angew Chem Int Ed Engl ; 59(44): 19610-19617, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32876984

RESUMO

Aluminum-containing adjuvants used in vaccine formulations suffer from low cellular immunity, severe aggregation, and accumulation in the brain. Conventional aluminosilicates widely used in the chemical industry focus mainly on acidic sites for catalytic applications, but they are rarely used as adjuvants. Reported here is an innovative "ligand-assisted steric hindrance" strategy to create a high density of six-coordinate VI Al-OH groups with basicity on dendritic mesoporous silica nanoparticles as new nanoadjuvants. Compared to four-coordinate IV Al-modified counterparts, VI Al-OH-rich aluminosilicate nanoadjuvants enhance cellular delivery of antigens and provoke stronger cellular immunity. Moreover, the aluminum accumulation in the brain is more reduced than that with a commercial adjuvant. These results show that coordination chemistry can be used to control the adjuvanticity, providing new understanding in the development of next-generation vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Silicatos de Alumínio/farmacologia , Complexos de Coordenação/farmacologia , Nanopartículas/química , Dióxido de Silício/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/toxicidade , Alumínio/química , Alumínio/farmacologia , Alumínio/toxicidade , Silicatos de Alumínio/química , Silicatos de Alumínio/toxicidade , Animais , Antígenos/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Feminino , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Nanopartículas/toxicidade , Ovalbumina/imunologia , Porosidade , Células RAW 264.7 , Dióxido de Silício/química , Dióxido de Silício/toxicidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-32160160

RESUMO

Background It is estimated that about 5-10% of women suffer from polycystic ovarian syndrome (PCOS) which is a major cause of female reproductive dysfunction. This study examined the role of quercetin on dehydroepiandrosterone (DHEA)-induced PCO in Wistar rats. Methods Twenty-eight pre-pubertal female Wistar rats that are 21 days old weighing 16-21 g were sorted into four groups (n = 7). Group I served as control and was given distilled water only, Group II were injected with 6 mg/100 g BW of DHEA in 0.2 mL of corn oil subcutaneously, Group III received 100 mg/kg BW of quercetin orally and Group IV received 6 mg/100 g BW of DHEA in 0.2 mL of corn oil subcutaneously and 100 mg/kg BW of quercetin orally. Rats were sacrificed after 15 days by cervical dislocation method. Blood samples and ovaries were collected for hormonal, biochemical, and histopathological analysis and expressions of mRNA androgen receptor gene were determined using RT-qPCR. All data were analysed using one-way ANOVA. Results A significant decrease (p < 0.05) in the antioxidant and metabolic enzyme activity in the DHEA treated group was observed when compared with control. DHEA co-administration with quercetin showed a significant decrease in malondialdehyde and cytokines when compared with DHEA treated group. Also a significant increase in progesterone, metabolic and antioxidant enzyme activity was observed. The histopathology demonstrates a reduction in cystic and atretic cells, improved expression of BCl2, E-Cadherin and a decrease in Bax. Conclusions Quercetin alleviated DHEA-induced PCO. These effects could be attributed to its antioxidant property.


Assuntos
Células da Granulosa/efeitos dos fármacos , Ovário/efeitos dos fármacos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Quercetina/farmacologia , RNA Mensageiro/metabolismo , Receptores Androgênicos/metabolismo , Adjuvantes Imunológicos/toxicidade , Animais , Antioxidantes/farmacologia , Desidroepiandrosterona/toxicidade , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Wistar , Receptores Androgênicos/genética
12.
Front Immunol ; 11: 618711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584713

RESUMO

Blockade of PD-1, an indispensable physiological immunoregulatory mechanism, enhances immune activities and is widely used in the immunotherapy of cancer. This treatment often accompanies inflammatory complication called immune-related adverse events (irAE), most frequently in the skin. To analyze how skin inflammation develops by the blockade of PD-1-dependent immunoregulation, we studied the exacerbation of oxazolone-induced contact hypersensitivity by PD-L1 blockade. The inactivation of PD-1 signaling enhanced swelling of the skin with massive CD8+ T cell infiltration. Among PD-1-expressing cells, T cells were the predominant targets of anti-PD-L1 mAb treatment since PD-L1 blockade did not affect skin inflammation in RAG2-/- mice. PD-L1 blockade during immunization with oxazolone significantly promoted the development of hapten-reactive T cells in the draining lymph nodes. The enhancement of local CD8+ T cell-dominant immune responses by PD-L1 blockade was correlated with the upregulation of CXCL9 and CXCL10. Challenges with a low dose of oxazolone did not demonstrate any significant dermatitis; however, the influence of PD-L1 blockade on T cell immunity was strong enough to cause the emergence of notable dermatitis in this suboptimal dosing, suggesting its relevance to dermal irAE development. In the low-dose setting, the blockade of CXCR3, receptor of CXCL9/10, prevented the induction of T cell-dominant inflammation by anti-PD-L1 mAb. This experimental approach reproduced CD8+ T cell-dominant form of cutaneous inflammation by the blockade of PD-L1 that has been observed in dermal irAE in human patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Dermatite de Contato/imunologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Receptor de Morte Celular Programada 1/imunologia , Adjuvantes Imunológicos/toxicidade , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Oxazolona/imunologia , Oxazolona/toxicidade , Receptores CXCR3/imunologia
13.
Org Biomol Chem ; 18(3): 425-430, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31774425

RESUMO

Herein, we report on the synthesis of a series of enantiomerically pure linear, iso-branched, and α-branched monoacyl glycerides (MAGs) in 63-72% overall yield. The ability of the MAGs to signal through human macrophage inducible C-type lectin (hMincle) using NFAT-GFP reporter cells was explored, as was the ability of the compounds to activate human monocytes. From these studies, MAGs with an acyl chain length ≥C22 were required for Mincle activation and the production of interleukin-8 (IL-8) by human monocytes. Moreover, the iso-branched MAGs led to a more pronounced immune response compared to linear MAGs, while an α-branched MAG containing a C-32 acyl chain activated cells to a higher degree than trehalose dibehenate (TDB), the prototypical Mincle agonist. Across the compound classes, the activity of the sn-1 substituted isomers was greater than the sn-3 counterparts. None of the representative compounds were cytotoxic, thus mitigating cytotoxicity as a potential mediator of cellular activity. Taken together, 6h (sn-1, iC26+1), 8a (sn-1, C32) and 8b (sn-3, C32) exhibited the best immunostimulatory properties and thus, have potential as vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Lectinas Tipo C/agonistas , Monoglicerídeos/farmacologia , Receptores Imunológicos/agonistas , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/toxicidade , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Monoglicerídeos/síntese química , Monoglicerídeos/toxicidade , Estereoisomerismo , Relação Estrutura-Atividade
14.
Am J Pathol ; 190(2): 286-294, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31734231

RESUMO

Murine models of Mycobacterium tuberculosis (Mtb) infection demonstrate progression of M1-like (proinflammatory) and M2-like (anti-inflammatory) macrophage morphology following primary granuloma formation. The Mtb cell wall cording factor, trehalose 6,6'-dimycolate (TDM), is a physiologically relevant and useful molecule for modeling early macrophage-mediated events during establishment of the tuberculosis-induced granuloma pathogenesis. Here, it is shown that TDM is a major driver of the early M1-like macrophage response as seen during initiation of the granulomas of primary pathology. Proinflammatory cytokines tumor necrosis factor-α, IL-1ß, IL-6, and IL-12p40 are produced in lung tissue after administration of TDM to mice. Furthermore, CD11b+CD45+ macrophages with a high surface expression of the M1-like markers CD38 and CD86 were found present in regions of pathology in lungs of mice at 7 days post-TDM introduction. Conversely, only low phenotypic marker expression of M2-like markers CD206 and EGR-2 were present on macrophages. These findings suggest that TDM plays a role in establishment of the M1-like shift in the microenvironment during primary tuberculosis.


Assuntos
Adjuvantes Imunológicos/toxicidade , Fatores Corda/toxicidade , Granuloma/patologia , Mediadores da Inflamação/metabolismo , Macrófagos/patologia , Mycobacterium/metabolismo , Pneumonia/patologia , Animais , Feminino , Granuloma/induzido quimicamente , Granuloma/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Pneumonia/metabolismo
15.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775224

RESUMO

The therapeutic application of antimicrobial peptides (AMPs), a potential type of peptide-based biomaterial, is impeded by their poor antimicrobial activity and potential cytotoxicity as a lack of understanding of their structure-activity relationships. In order to comprehensively enhance the antibacterial and clinical application potency of AMPs, a rational approach was applied to design amphiphilic peptides, including head-to-tail cyclic, linear and D-proline antimicrobial peptides using the template (IR)nP(IR)nP (n = 1, 2 and 3). Results showed that these amphiphilic peptides demonstrated antimicrobial activity in a size-dependent manner and that cyclic peptide OIR3, which contained three repeating units (IR)3, had greater antimicrobial potency and cell selectivity than liner peptide IR3, DIR3 with D-Pro and gramicidin S (GS). Surface plasmon resonance and endotoxin neutralization assays indicated that OIR3 had significant endotoxin neutralization capabilities, which suggested that the effects of OIR3 were mediated by binding to lipopolysaccharides (LPS). Using fluorescence spectrometry and electron microscopy, we found that OIR3 strongly promoted membrane disruption and thereby induced cell lysis. In addition, an LPS-induced inflammation assay showed that OIR3 inhibited the pro-inflammatory factor TNF-α in RAW264.7 cells. OIR3 was able to reduce oxazolone-induced skin inflammation in allergic dermatitis mouse model via the inhibition of TNF-α, IL-1ß and IL-6 mRNA expression. Collectively, the engineered head-to-tail cyclic peptide OIR3 was considerable potential candidate for use as a clinical therapeutic for the treatment of bacterial infections and skin inflammation.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis/farmacologia , Dermatite/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Adjuvantes Imunológicos/toxicidade , Animais , Antibacterianos/química , Anti-Inflamatórios/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Materiais Biocompatíveis/química , Morte Celular , Dermatite/etiologia , Dermatite/patologia , Endotoxinas/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oxazolona/toxicidade , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Células RAW 264.7
16.
Exp Hematol ; 76: 49-59, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31381950

RESUMO

T(4;11) MLL-AF4 acute leukemia is one of the most aggressive malignancies in infant and pediatric populations. Epidemiological and functional studies have highlighted the influence of an overstimulation of the immune system on leukemia development. This study aimed at assessing if the cell-of-origin of t(4;11) MLL-AF4 acute leukemia is sensitive to a viral or bacterial mimic and if maternal immune activation can lead to a full-blown leukemia. To answer this, we used the Mll-AF4 pre-leukemia mouse model that initiates the expression of Mll-AF4 in the first definitive hematopoietic cells formed during embryonic development. We observed an increase in proliferation upon hematopoietic differentiation of fetal liver Mll-AF4+ Lineage-Sca1+ckit+ (LSK) cells exposed to the immune stimulants, poly(I:C) or LPS/lipopolysaccharide. This was accompanied by increased expression of a subset of MLL-AF4 signature genes and members of the Toll-like receptor signaling pathways in fetal liver Mll-AF4+ LSK exposed to poly(I:C), suggesting that the cell-of-origin responds to inflammatory stimuli. Maternal immune activation using a single dose of poly(I:C) did not lead to the development of leukemia in Mll-AF4+ and control offspring. Instead, aging MLL-AF4+ mice showed an increased proportion of T-lymphoid cells in the spleen, lost their B-lymphoid bias, and had decreased frequencies of hematopoietic stem and multipotent progenitor cells. Overall, this study suggests that the fetal liver Mll-AF4+ LSK cells are sensitive to direct exposure to inflammatory stimuli, especially poly(I:C); however, maternal immune activation induced by a single exposure to poly(I:C) is not sufficient to initiate MLL-AF4 leukemogenesis.


Assuntos
Adjuvantes Imunológicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Inflamação/genética , Proteína de Leucina Linfoide-Mieloide/análise , Proteínas de Fusão Oncogênica/análise , Poli I-C/farmacologia , Pré-Leucemia/patologia , Efeitos Tardios da Exposição Pré-Natal , Adjuvantes Imunológicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Endotoxinas/farmacologia , Feminino , Células-Tronco Hematopoéticas/imunologia , Inflamação/induzido quimicamente , Fígado/citologia , Fígado/embriologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Células Mieloides/citologia , Células Mieloides/efeitos dos fármacos , Poli I-C/toxicidade , Gravidez , Transcriptoma
18.
Immunopharmacol Immunotoxicol ; 41(1): 140-149, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30714433

RESUMO

Context: Influenza is a severe, life-threatening viral disease that can be prevented by vaccination. However, the anti-influenza human vaccine failed to show the required efficacy both in infants under 5 years old and in the elder population, who are among those with the highest risk of developing severe complications after influenza infection. Therefore, it is of high importance to improve the vaccine efficacy and ensure its safety in these susceptible populations. GK-1, a novel 18-aa peptide adjuvant, has been proved to increase the immunogenicity of the human influenza vaccine in both young and aged mice. Objective: A preclinical study of the toxicity profile of GK-1 following the World Health Organization guidelines to support its use was herein conducted. Material and methods: GK-1 was synthetically produced following Good Manufacturing Practices. The toxicological evaluation of GK-1 peptide was performed in rats after repeated dose-ranging trials by the subcutaneous route. The mutagenic potential of GK-1 was assessed by the micronucleus, chromosomal aberration, and Ames tests, in accordance with OECD Guidelines. Results: GK-1 did not show toxic effects at doses up to 12.5mg/kg, corresponding to 25 times the dose intended for human use. No indications of mutagenic potential were observed. GK-1 after dermal administration was well tolerated locally. Conclusion: The efficacy of GK-1 to improve influenza vaccine protection, along with the absence of toxicity and mutagenicity, as reported herein, support the evaluation of this peptide in a clinical trial as a novel adjuvant for human use.


Assuntos
Adjuvantes Imunológicos/toxicidade , Aberrações Cromossômicas/efeitos dos fármacos , Dano ao DNA , Vacinas contra Influenza/imunologia , Peptídeos Cíclicos/toxicidade , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Influenza Humana/prevenção & controle , Injeções Subcutâneas , Masculino , Testes de Mutagenicidade , Peptídeos Cíclicos/imunologia , Ratos Wistar , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Testes de Toxicidade Crônica
19.
FASEB J ; 33(6): 6829-6837, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30811953

RESUMO

Although prostaglandins (PGs) are known to be involved in the progression of arthritis, the role of PGD2 remains unclear. In this study, we evaluated the role of PGD2 in joint inflammation using genetically modified mice. Injection of complete Freund's adjuvant (CFA) increased the production of PGD2 and induced paw swelling and cartilage erosion in wild-type (WT) mice. These phenomena were accompanied with an increase in the mRNA levels of TNF-α, IL-6, IL-1ß, and matrix-degrading metalloproteinase-9. Knockdown of hematopoietic PGD synthase (H-PGDS) abolished the PGD2 production and exacerbated all of the arthritic manifestations in the inflamed paw. Immunostaining revealed that infiltrating macrophages strongly expressed H-PGDS in the CFA-injected paw. Morphologic studies revealed vascular hyperpermeability and angiogenesis in the inflamed WT paw. H-PGDS deficiency was accelerated, whereas daily administration of a PGD2 receptor D prostanoid (DP) agonist attenuated the CFA-induced hyperpermeability and angiogenesis. We further confirmed that DP deficiency exacerbated, whereas the administration of the DP agonist improved, the CFA-induced arthritic manifestations. The findings demonstrate that H-PGDS-derived PGD2 ameliorates joint inflammation by attenuating vascular permeability and subsequent angiogenesis and indicates the therapeutic potential of a DP agonist for arthritis.-Tsubosaka, Y., Maehara, T., Imai, D., Nakamura, T., Kobayashi, K., Nagata, N., Fujii, W., Murata, T. Hematopoietic prostaglandin D synthase-derived prostaglandin D2 ameliorates adjuvant-induced joint inflammation in mice.


Assuntos
Artrite Experimental/prevenção & controle , Inflamação/prevenção & controle , Oxirredutases Intramoleculares/fisiologia , Artropatias/prevenção & controle , Neovascularização Patológica/prevenção & controle , Prostaglandina D2/farmacologia , Adjuvantes Imunológicos/toxicidade , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Permeabilidade Capilar , Colágeno/toxicidade , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Artropatias/induzido quimicamente , Artropatias/metabolismo , Artropatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
20.
AAPS PharmSciTech ; 20(1): 31, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30603786

RESUMO

We prepared mineral oil-based emulsion adjuvants by employing simple self-emulsifying drug delivery system (SEDDS). Mineral oil emulsions (3%, 5%, and 7%) were prepared using deionized water and C-971P NF and C-940 grade carbomer solutions with concentrations 0.01% (w/v) and 0.02% (w/v). In total, 15 emulsions were prepared and mixed with a solution containing inactivated Mycoplasma hyopneumoniae (J101 strain) antigen and porcine circovirus type 2 antigen to prepare vaccines. Droplet sizes in the submicron range and zeta potential values between - 40 and 0 mV were maintained by most emulsion adjuvants for a period of 6 months. Emulsion adjuvants were regarded safe, and their M. hyopneumoniae-specific IgG, IgG1, and IgG2a titers were either better or comparable to those of aluminum gel.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsificantes/toxicidade , Imunoglobulina G/imunologia , Óleo Mineral/toxicidade , Mycoplasma hyopneumoniae/imunologia , Água , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/toxicidade , Animais , Emulsificantes/administração & dosagem , Emulsões/administração & dosagem , Emulsões/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Óleo Mineral/administração & dosagem , Mycoplasma hyopneumoniae/efeitos dos fármacos , Suínos , Água/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA